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DETECTION OF SINGULARITIES 
USING SEGMENT APPROXIMATION 

R. GROTHMANN AND H. N. MHASKAR 

ABSTRACT. We discuss best segment approximation (with free knots) by poly- 
nomials to piecewise analytic functions on a real interval. It is shown that, if the 
degree of the polynomials tends to infinity and the number of knots is the same 
as the number of singularities of the function, then the optimal knots converge 
geometrically fast to the singularities. When the degree is held fixed and the 
number of knots tends to infinity, we study the asymptotic distribution of the 
optimal knots. 

1. INTRODUCTION AND MAIN RESULTS 

The notion of segment approximation can be described in a very general 
way as follows. Let L be a functional that associates with each continuous 
f: [-1, 1] -* R and each subinterval [a, b] C [-1, 1] a nonnegative number 
L(f, [a, b]). Usually L describes some constructive property of f on [a, b] 
such as the modulus of continuity of f on [a, b], the degree of approximation 
of f by polynomials of a fixed degree on [a, b], etc. 

A partition 

(1.1) -1 = Xo < X1 < < Xk+1 

is called a leveled partition if 

L(f, [xi, x1+1]) = L(f, [xj, xj+l]) O < i, j < k, 

and an optimal partition if 

max L(f, [xi, xi+,]) < max L(f, [zi, zi+1]) 
O<i<k O<i<k 

for all partitions -1 = zO < zI < < Zk+1 = 1. The problem of segment 
approximation consists of determining an optimal partition {xi } and the value 

max L(f, [xi, xi+ 1]) 
O<i<k 

for this partition. It is easy to see that all leveled partitions are optimal if L is 
monotone on the intervals, i.e., 

L(f, I,) < L(f, I2) for all intervals I, C I2 C [-1, 1]. 

In [4, 5], one can find efficient algorithms to determine the leveled and optimal 
partitions for such functionals. However, the existence of a leveled partition is 
guaranteed by the following theorem for a fairly large class of functionals L. 

Received by the editor October 25, 1991. 
1991 Mathematics Subject Classification. Primary 41 A 10, 41 A 1 5. 

? 1992 American Mathematical Society 
0025-5718/92 $1.00 + $.25 per page 

533 



534 R. GROTHMANN AND H. N. MHASKAR 

Theorem1.1. Let L: [-1, 1]x[-1, 1] - [O, oc) be continuous and L(a, a) = 
0 for a E [-1, 1]. Then for each k > 1 there exists a partition -1 = xo < 

X1 < *-- < Xk+I = such that 
L(xi, xi+,) = L(xj, xj+1), 0< i, i <k. 

In this paper, we are mainly interested in the following functionals. For an 
integer n > 0. HI will denote the class of all real polynomials of degree at 
most n. For n > 0 we define the functional dn as follows. If [a, b] C IR and 
f E C[a, b], then 

( 1.2) dn (f E [a, b]) := minn 11 - P ka, b], 

where 11 denotes the supremum norm on [a, b]. Next, for n > 1 and 
[a, b] C X, let 

a+b b-a (2j- 1 \ 
ti, n := tj n a b 2 2 Os 2 1,..., n. 

For f E C[a, b], let Ln(f, [a, b]) E Hn-l be the polynomial satisfying 

(1.3) Ln(f , [a, b])(tj,n) = f(t,n) 1 < j < n. 

We define the functional dn by 

(1.4) dn(f, [a, b]) := 1f - Ln(f, [a, b])|l[a,b]. 

Of course, dn is much easier to compute than dn. Furthermore, practical 
experience shows that the algorithm in [5] converges to a leveled partition for 
the functionals dn in (1.4). 

The following theorem demonstrates that the leveled partitions corresponding 
to the functionals (1.2) and (1.4) can be used to detect certain singularities of 
f. 
Theorem 1.2. Let f E C[a, b] be piecewise analytic, i.e., there is a partition 

-1 = YO < Y1 < < Yk+l = 1 = 

such that for each integer i, 0 < i < k, fI := fl[Jv, ,+,] has an analytic continu- 
ation to a neighborhood of [y1, Yi+ ], but does not extend to an analytic function 
on any neighborhood of any yi, i = 1, . .. , k. Let, for each integer n > 1, 

-1 = Xn,,O < Xn,I < ... < Xn,k+l = 1 

be a leveled partition for f corresponding to dn (respectively cn). Then, for 
each integer i, 1 < i < k, limnoo Xn, i =y j In fact, 

(1.5) limsup sup Ixn, iyjl/ln < 1. 
ne-on 1H<i<k 

The proof of Theorem 1.2 depends on the characterization of analytic func- 
tions due to Bernstein and a theorem of Hasson on derivatives of polynomials 
of best approximation. When more information is available about the function, 
for example when the functions f are entire functions of given order and type, 
the rates of convergence in (1.5) can be strengthened accordingly (see Corollary 
3.1). 

The following counterexample presents a case where the internal knot does 
not converge to the internal singularity of the function f . However, in this 
case the function is not differentiable in the first segment interval. 
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Example 1.3. Let k = 1 and -l < x, :x X1 ,n < 1 be a leveled partition for 
the following function f corresponding to the functional d,: 

f(x) -{x+l for - I < x < 0 
1 +x/2 for 0 < x < 1. 

Then we claim that x, converges to -1 . Assume that xn > -1 + e for n E A, 
where A is a subsequence of N and e > 0. By a theorem of Bernstein [1], for 
e > , 

lim ndn(f, [-1,-I + e]) = C\/i. 
n-goo, nEA 

Thus, 
lim sup ndn(f, [-, Xn]) > C1 > ? C 

n-4 0o 

On the other hand, f is continuously differentiable on [-1 + a, 1], and f' 
satisfies a Lipschitz condition of order 1. By a theorem of Jackson [6], 

lim sup ndn(f, [xn, 1]) = 0 . 
fl--4o 

Since, by the definition of xn, dn(f, [-1, Xn]) = d(f, [Xn, 1]) for all integers 
n > 1, this is a contradiction. 

Next we consider the case when the degree of polynomials stays fixed, but 
the number of knots tends to infinity. For any partition 

P: -1 = ZO < Z < *< Zk+1l, 

we define the measure Tp by the formula 

TP(A) = I{i: z= eA}I 

for Borel sets A C [-1, 1] . 

Theorem 1.4. Let n > 0 be a fixed integer, f be n + 1 times continuously 
differentiable on [-1, 1], and for an integer k > 0 

Pk: - 1 = :k,0 <4k, I < ... < 4k,k+l= 

be a leveled partition for f corresponding to dn (respectively dn). Further- 
more, we assume that f is not a polynomial in rIn on any subinterval [- 1, 1]. 
Set A P= I 

If(n+1)(t)II/ndt and Ek := dn(f, [k,o, 'k,I]) (respectively Ek 

dn(f, [1k, o , k, ])). Then 

lim (k + 1)[(n + 1)!2nEk]11n = A 
kaz oo 

and, for any [a, b] C [-I, 1], 
l b 

lim Tpk([a, b]) = j bIf(n+1)(t) I i/n dt 
kaz+oo A I 

2. NUMERICAL RESULTS 

In our first example, we set 

f1(x) := Icos7r(x - 0.1)I, x E [-1, 1], 
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TABLE 1 

degree Yo Yi Y2 Y3 error 

3 - 1 -0.3907 0.5899 1 0.026 

5 - 1 -0.3998 0.5992 1 0.00059 

7 - 1 -0.3999978 0.6000002 1 0.0000068 

TABLE 2 

degree Yo Y1 Y2 error 

3 0 0.057 1 0.01 

5 0 0.02 1 0.0039 

7 0 0.015 1 0.0025 

TABLE 3 

degree Yo Y1 Y2 error 

3 0.1 0.4035 1 0.00083 

5 0.1 0.2538 1 0.00000815 

7 0.1 0.2498 1 0.00000007 

so that the true singularities Yi and Y2 are respectively -0.4 and 0.6. The 
function fi is approximated with the help of an algorithm based on [5]. The 
results are summarized in Table 1, where error means deviation of fi from its 
best segment approximation. 

Next we choose the function 

f2X: 
/I,- O<x <1/4, 

f2(x) := l1/2e2x-1/2, 1/4<x< 1. 

First we approximate this function on [0, 1] with one internal knot (Table 2). 
As expected from Example 1.3 we have Yi -+ 0. 

Finally, we approximate f2 on the interval [0.1, 1] with one internal knot 
(Table 3). 

3. PROOFS 

Proof of Theorem 1.1. We may assume that for each partition (1.1) there is 
at least one j E {1, ... , k + 1} with L(xj-I, xj) > 0. For, otherwise, the 
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theorem is already proved. Define 

f ~~~~~~k+1 
M = (d, , (5k+l) E Rk+l: Phi =2, (5i > 0 for i =1,., k + 1? 

and set 
S(d) := 2 (pi Idz , Pk+ 1) 

for d = (a5,...,(k+1) E M, where 

Pi := L -1 + E(5j ,-1 + E,5, 
j=l j=l 

Obviously, S is a continuous operator, mapping M to itself. It suffices to 
prove that there is a d E M with 

(3.1) S(d) = ; := ( ' 'k+1 

Assume the contrary. Then we define an operator T: M -, M as follows. 
For m E M we construct the straight line Lm which runs through S(m) and 
4. The intersection of Lm with M is a line segment with endpoints pi and 
P2. Set T(m) = pi if pi is the endpoint such that ' lies between pi and 
S(m), and P2 otherwise. Since S(m) : C, the operator T is well defined and 
continuous. Furthermore, T maps M to itself. 

In view of Brower's fixed point theorem, T has a fixed point d = (a1, 

5k+l) E M. By the construction of T, j= 0 for a j E {1, ..., k + 1}. 
Let S(d) =:(s, ... ,Sk+I). Since L(a, a) = 0 for all a E [-1, 1], we see 
that sj = 0. The construction of T then implies that the jth component of 
T(d) = d is not zero, i.e., (5j : 0. This contradiction proves that (3.1) holds 
for some d E M. E 

Proof of Theorem 1.2. We observe that a piecewise analytic function cannot be 
infinitely many times differentiable on [-1, 1] . For 1 < i < k, let ri > 0 be 
the smallest integer such that f(r,)(yt+) : f(r,)(yl_) and set 

a inf f f(r,) (y? +) - f(r)( ) > 0 
1<i<k 

Wenowfix i, 1 < i K k. Forintegers n > 0,we set ei,= infl<l<k lxnl-Yil, 
and we shall estimate a in terms of ci, n . For the sake of concreteness, we shall 
assume that {Xn, / } is a leveled partition for dn . The proof for the case of dn 
is similar and simpler. 

Let aj < yj < yj+i < by be found so that fj can be extended to an analytic 
function on a neighborhood of [a1, bj], j = 0, ... , k. Let 

Dn:= max dn(f1, [aj, bj]) 

and, for any j, 0 < j < k, 

-n. A= n f, [xnj X no ;l A 
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We observe that at least one of the intervals [x,, , x,,, j+I] is contained in 
an interval [ye, y+ I], 0 < j, 1 < k. Thus, it follows from a well-known result 
[3, Vol. III, p. 48] that 

(3.2) D< c log nDn. 

(Here and in the sequel, c, cl, ... will denote positive constants independent 
of n and the function involved.) 

Let 

P() f Ln(f, [xnj, Xn~,+1])(t), Xn, , 
< t < Xn,j+l 0 ? 

< j < k 1, 

Then, by (3.2), 

(3X3) 11f f-Pnll[- 1, 1] < c log nDn 

Let n E N such that i, n > 0. If pn E I-n denotes the polynomial of best 
approximation to ft on [ai, bi], then by a theorem due to Hasson [2], we have 

(3.4) n- i(r) y+] < C1nDn 
Let Ki := [Yi, Yi + i, n]. Then Pn is a polynomial on Ki. Using the Markov 

inequality and (3.3), we obtain 

Ip(r) p(r)H r < C <f c3n 2r log nD, 
11Pn Pn 

- 
11,< ,1P 

PnH1K, ? 6i, n 6i.,n 

Hence, (3.4) implies 

Ppnr)(y) - f(r,)(y+) I = Ipr)(y) - f(ri)(Y) I < C4fn2rl log nDn 

i, n 

Estimating pnr,)(y1) - f(r,)(y,)I in the same manner, we see that 

, < If f(r)(y?) - f)(yir)y < n2r, log nD, 

6i , n 

Hence, 

n 2(log nDnI Ilr, 

This estimate is valid for all n E N and 1 < i < k . Since Dn 0 exponentially 
fast, ci, n 0 exponentially fast, 1 < i < k . However, this is only possible if 
Xni y exponentially fast. This proves Theorem 1.2. E 

It is clear from the proof that the operator Ln can be replaced by a wide 
class of operators. As long as log n in (3.3) is replaced by constants Cn such 
that lim supneo CnlIn = 1, the theorem remains true. 

Furthermore, we note the following corollaries of the proof of Theorem 1.2. 

Corollary 3.1. If each f is an entire function of order 1 and finite exponential 

type T, 0 < i < k, then for any (5 > 0, using the notation of the proof of 
Theorem 1.2, 
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Corollary 3.2. Let m > 2 and k > 1 be integers, {y1}ik=I be as in Theorem 
1.2, and f: [-1, 1] -* IR be m-times continuously differentiable on each interval 
[yi, Yi+V], 0 < i < k, but not ([m/2] - 1)-times continuously differentiable in 
the points yi, i = 1,..., k. Let {x ,k}+ I be the leveled partitions for f as 
in Theorem 1.2. Then i x, i = yi for 1 < i < k. 

Proof of Theorem 1.4. As in the proof of Theorem 1.2, we consider only the 
case of the functional d,: the case of d, is simpler. Denote by Ek the error 
of approximation with k internal knots. Since 

limsup sup dn(f, [x, x + C]) = 0 
k-azo O< <q2/(k+1),-I x<I-q 

and at least one of the intervals [Kk j, k j+1] has length not exceeding 
2/(k + 1), Ek tends to 0 as k - oo. Set 6kV := XkV+l-k,v MV = 0, M k. 

We claim that 

(3.6) lim maxckv= 0 
k-oo 0<v<k 

If not, a compactness argument shows that there is a subinterval I = [a, fi], 
a < fl, of [-1, 1] such that 

I C [4k I (k) , 'Xk, (k)+ II Ik = k, , k2,. 

for a subsequence k1 < k2 <K of N. Since Ek tends to 0, the function f 
must be a polynomial of degree n on I. This contradiction proves our claim. 

Let 
Ik, v := 14k,z v , k, v1]I k E N, v = O.. , k, 

and define Pk,, E rIn to be the polynomial of best approximation to f on 
Ik, . Interpolating in the roots of the nth-degree Chebyshev polynomial scaled 
to the interval I>, a well-known formula for the error of interpolation [3, Vol. 
III, p. 10] implies that 

If (n+l1) l gsn 
(3.7) Ek < max f-l kv 

iv (n + 1)! 2n1 

On the other hand, in view of the Chebyshev alternation theorem, Pk, v inter- 
polates f on at least n distinct points 1k V, I * t<k, , n in Iv . Hence, 

f(x) -Pk,v(X) = (n + 1)!(Ok,v(X) 

where Xx is a point in Ik,v and (Ok, (X) = Hn=l(X - tkk,v,). Since the 
Chebyshev polynomial (scaled to Ik, v) has the minimal norm among all monic 
polynomials in lIr we have 

,,n 
(3.8) max Iw(Ok, v(t)= k(Sk, V ) k >kv 

tEIk,i - 2n-I 

Hence, 

mintEIk > vf(n+)l) 
Ek ?(f-Pk, )( k, I ) max )k, (t)v 

--(n + 1)! tEIk v 

- (n?+1)! 2n-I 
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Setting c := ((n + 1)!2n-1)l/n , we get 

min I f (n+ 1) ( t) I I/~ In } 11~kn I 
if(n+ 1) ( t) I 

I In 
tEIV tEllv 

By summing over v = 0, ..., k, it follows from the Riemann integrability of 
lf(n+l)l /n that 

lim (k + -)cEk J If(n+1)(t)II/n dt = 

Fix -1 < a < /3 < 1 and let T be any weak limit point of the sequence of 
unit measures (Tck). Again using the Riemann integrability of lf(n+l)ll/n, we 
have 

T([a, fl])A = lim (k + l)Tk([l, fl])CEj = J (n+ )(t)lln dt. 
k--400 

This proves the theorem. E 
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